Generazione eolica

CONVERSIONE AERODINAMICA

Ing. Claudio Rossi

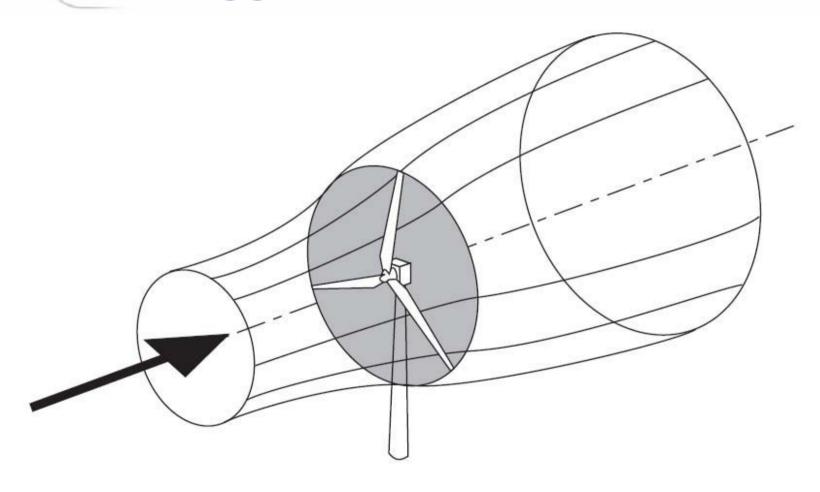
Dip. Ingegneria Elettrica

Via risorgimento, 2

40136 Bologna

Tel. 0512093564

Email claudio.rossi@unibo.it



1. Contenuto

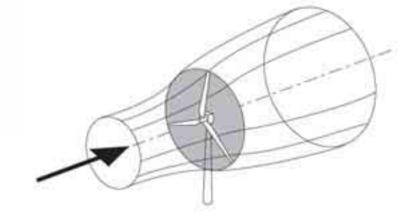
- 1. Teoria unidimensionale e legge di Betz
- 2. Analisi aerodinamica della pala
- 3. Controllo

Disco attuatore e tubo di flusso

Disco attuatore e tubo di flusso Ipotesi semplificative:

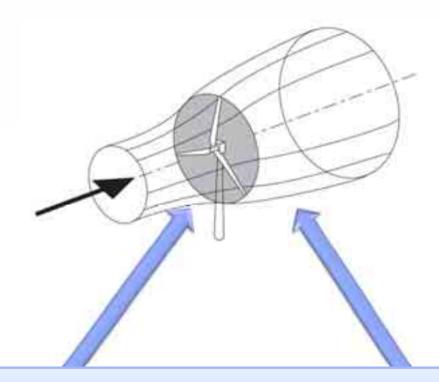
- 1. L'insieme delle pale è assimilabile ad un disco 'poroso' di spessore nullo
- 2. Il disco sottrae energia cinetica al vento, rallentando la massa d'aria che lo investe
- 3. La massa d'aria che investe il disco rimane separata da quella che la circonda (tubo di flusso)
- 4. La massa d'aria fluisce solamente in direzione longitudinale

Principio di conversione - lungo il tubo di flusso


densità dell'aria
COSTANTE

portata d'aria in ogni sezione COSTANTE

La velocità della massa d'aria
DIMINUISCE



La sezione del tubo

AUMENTA

Principio di conversione – VELOCITA'

L'aumento della sezione del tubo di flusso determina una graduale DIMINUIZIONE della velocità dell'aria lungo il tubo di flusso

Principio di conversione - PRESSIONE

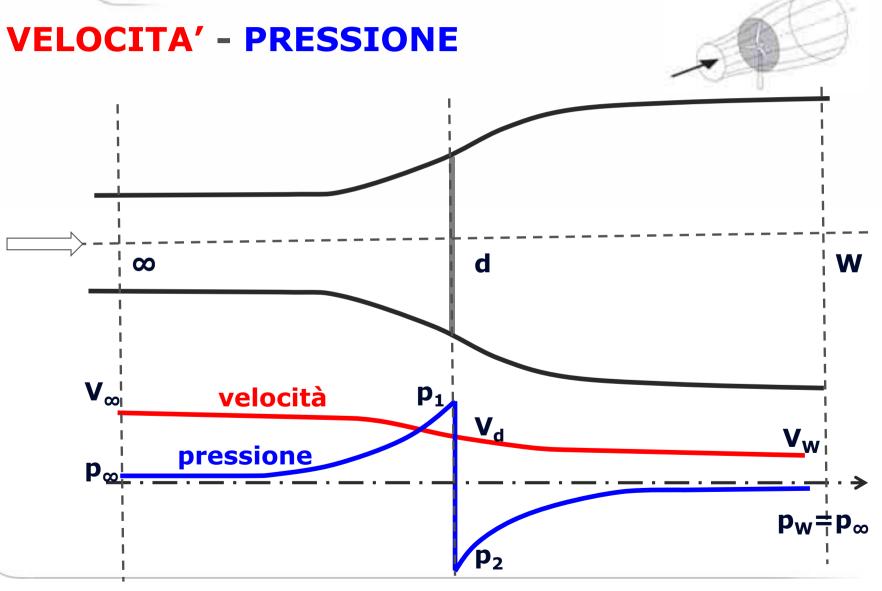
in ingresso al tubo

PRESSIONE ATMOSFERICA

in uscita al tubo
PRESSIONE
ATMOSFERICA

prima del disco

la diminuzione della velocità (senza la produzione di lavoro) determina un

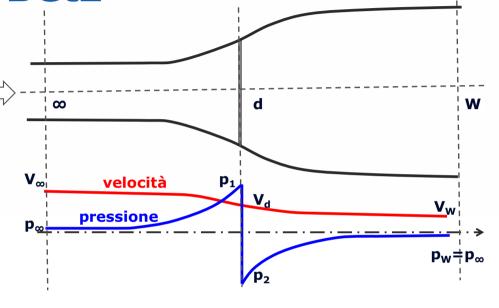

AUMENTO DI PRESSIONE

sul disco

PRESSIONE CALA BRUSCAMENTE

 Teoria unidimensionale e legge di Betz

Equazioni


Equazione di continuità

$$\dot{m} = \rho A_{\infty} V_{\infty} = \rho A_{d} V_{d} = \rho A_{w} V_{w}$$

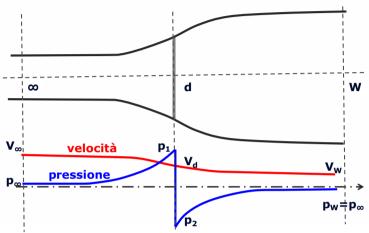
La variazione della quantità di moto tra ingresso e uscita

$$F = \dot{m}(V_{\infty} - V_{W}) \left[\frac{Kg}{s} \frac{m}{s} \right] = [N]$$

è pari alla spinta assiale F sul disco

ρ: densità dell'aria ρ=1.22 [kg/m²]

 A_{∞} , A_d , A_W : sezioni del tubo di flusso [m²]


m: portata in massa [kg/s]

F: spinta assiale sul disco [N]

Equazioni

La spinta assiale può essere espressa come variazione di pressione sulle facce del disco

$$F_{R} = \dot{m}(V_{\infty} - V_{W}) = (p_{1} - p_{2})A_{d}$$

$$a = \frac{V_{\infty} - V_{d}}{V_{\infty}}$$

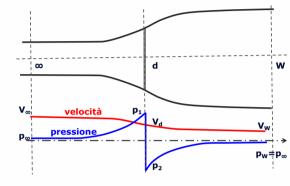
$$V_{d} = V_{\infty}(1 - a)$$

$$\dot{m} = \rho A_{d}V_{d}$$

a: fattore di interferenza. Rappresenta la riduzione di velocità davanti al disco

(a: inflow factor)

$$F_R = (p_1 - p_2)A_d = (V_{\infty} - V_W)\rho A_d V_{\infty}(1 - a)$$


$$p_1 - p_2 = (V_{\infty} - V_W) \rho V_{\infty} (1 - a)$$

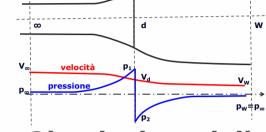
1. Teoria unidimensionale e legge di Betz

Equazioni

$$\frac{1}{2}\rho_{\infty}V_{\infty}^{2} + \rho_{\infty}gh_{\infty} + p_{atm} = \frac{1}{2}\rho_{d}V_{d}^{2} + \rho_{d}gh_{d} + (p_{atm} + p_{1})$$

$$\frac{1}{2}\rho_{d}V_{d}^{2} + \rho_{d}gh_{d} + (p_{atm} + p_{2}) = \frac{1}{2}\rho_{w}V_{w}^{2} + \rho_{w}gh_{w} + p_{atm}$$

Dall'equazione di Bernoulli


$$\frac{1}{2}\rho(V_{\infty}^2-V_d^2)=p_1$$

$$\frac{1}{2}\rho(V_W^2-V_d^2)=p_2$$

$$p_1 - p_2 = \frac{1}{2} \rho \left(V_{\infty}^2 - V_W^2 \right)$$

Equazioni

Uguagliando la differenza di pressione (p1-p2) calcolata dalla conservazione della quantità di moto e da Bernoulli:

$$\frac{1}{2}\rho(V_{\infty}^{2}-V_{W}^{2})=(V_{\infty}-V_{W})\rho V_{\infty}(1-a)$$

$$V_{W}=V_{\infty}(1-2a)$$

La riduzione della velocità dell'aria avviene quindi: per metà davanti al disco $V_d = V_{\infty}(1-a)$ e per metà dietro al disco $V_W = V_{\infty}(1-2a)$

Teoria unidimensionale e legge di Betz

Equazioni

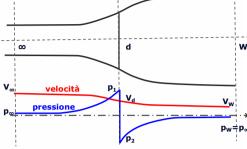
Equazioni
$$v_{\infty}$$
 velocità v_{1} v_{2} velocità v_{2} v_{3} verto dal disco v_{1} v_{2} v_{3} v_{4} v_{4} v_{5} v_{6} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{8}

$$P_R = F_R V_d$$

$$P_{R} = (V_{\infty} - V_{W}) \rho A_{d} V_{\infty} (1 - a) V_{d}$$

$$P_R = 2\rho A_d V_\infty^3 a (1-a)^2$$

La potenza estratta dipende:


- dal cubo della velocità del vento
- dal fattore di interferenza a (rallentamento del vento)

Teoria unidimensionale e

legge di Betz

Equazioni

Calcolo della potenza P_d disponibile dal vento

$$P_{disp} = \frac{1}{2}\dot{m}V_{\infty}^{2} = \frac{1}{2}\rho A_{\infty}V_{\infty}V_{\infty}^{2} = \frac{1}{2}\rho A_{\infty}V_{\infty}^{3} \quad \left[\frac{kg}{s}\frac{m^{2}}{s^{2}}\right] = \left[N\frac{m}{s}\right] = [W]$$

$$\left[\frac{kg}{s}\frac{m^2}{s^2}\right] = \left[N\frac{m}{s}\right] = \left[W\right]$$

Visto che non si conosce A_{∞} , per convenzione ci si riferisce ad A_d

$$P_d = \frac{1}{2} \rho A_d V_{\infty}^3$$

1. Teoria unidimensionale e

legge di Betz

Equazioni

Calcolo del coefficiente di potenza C_P

$$C_{P} = \frac{P_{R}}{P_{d}} = \frac{2\rho A_{d} V_{\infty}^{3} a (1-a)^{2}}{\frac{1}{2} \rho A_{d} V_{\infty}^{3}}$$

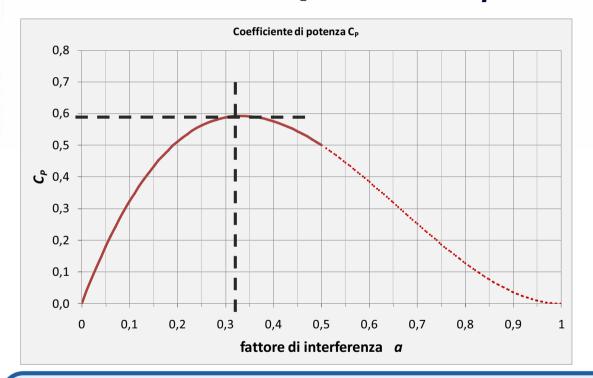
$$V_{\infty}$$
 velocità P_1 V_d P_{∞} pressione P_2

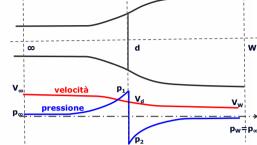
$$C_P = a4(1-a)^2$$

Calcolo del massimo di C_P

$$\frac{dC_P}{da} = 0$$

$$\left|a\right|_{C_P^{MAX}} = \frac{1}{3}$$

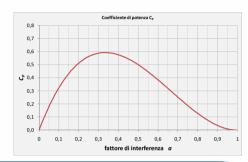

$$C_P^{MAX} = \frac{16}{27} \cong 0.593$$



Teoria unidimensionale e

legge di Betz

Coefficiente di potenza C_P

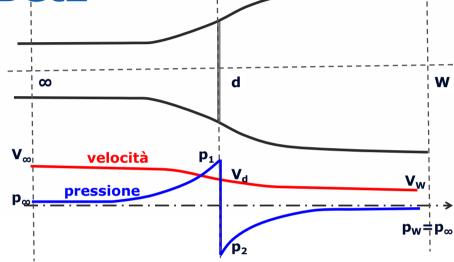

Attenzione!
$$V_W = V_{\infty}(1-2a)$$

1. a>0.5 non ha senso fisico. Poiché significherebbe aria con velocità negativa nella sezione d'uscita.

Limite di Betz

$$C_P^{MAX} \cong 0.59$$

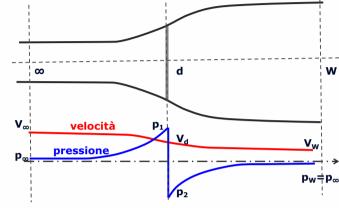
Significato di C_P^{MAX}


- 1. La velocità dell'aria in uscita dal tubo deve essere non nulla altrimenti non vi è trasporto di materia (effetto muro)
- 2. Solo per a=1/3 si massimizza l'estrazione di potenza. Per questo valore si ha che la velocità d'uscita vale

$$V_W\Big|_{C_P^{MAX}} = V_\infty \left(1 - 2\frac{1}{3}\right) \Longrightarrow V_W\Big|_{C_P^{MAX}} = \frac{V_\infty}{3}$$

Limite di Betz

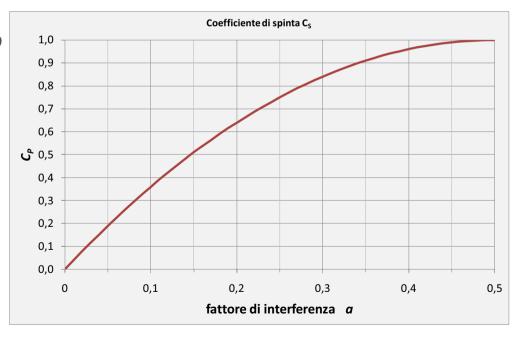
$$C_P^{MAX} \cong 0.59$$


Significato di C_PMAX

3. Il tubo di flusso si espande davanti al disco e quindi la sezione di vento utilizzato A $_\infty$ alla velocità massima V_∞ è inferiore a quella che raggiunge il disco A_d

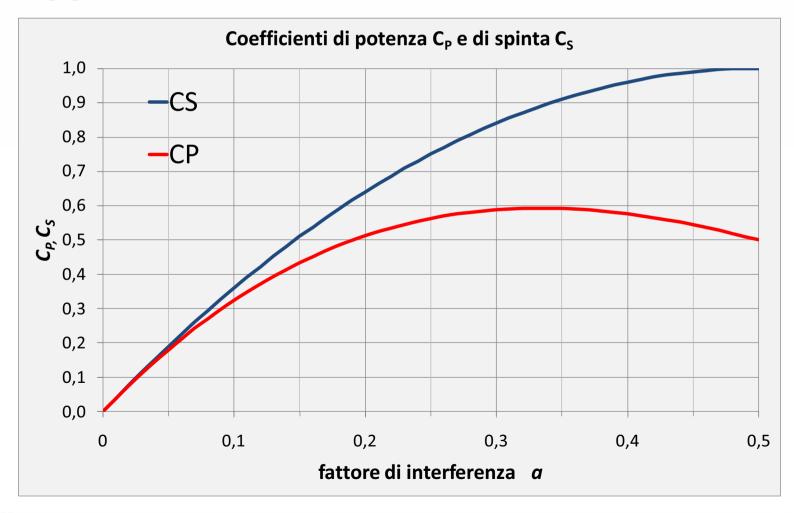
Forza di spinta assiale

Calcolo del coefficiente di spinta C_S



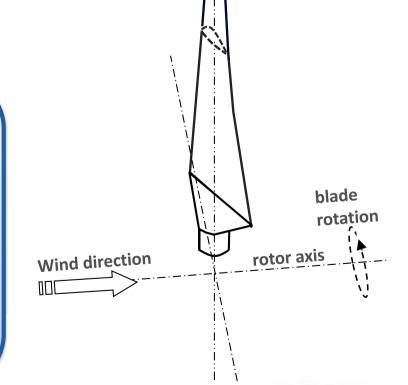
 F_R : forza esercitata sul disco

 F_d : forza disponibile nel vento


$$C_{S} = \frac{F_{R}}{F_{d}} = \frac{P_{R}/V_{d}}{P_{d}/V_{\infty}} = \frac{2\rho A_{d}V_{\infty}^{2}a(1-a)}{\frac{1}{2}\rho A_{d}V_{\infty}^{2}}$$

$$C_S = 4a(1-a)$$

Legge di Betz


Flussi d'aria agenti sulla pala

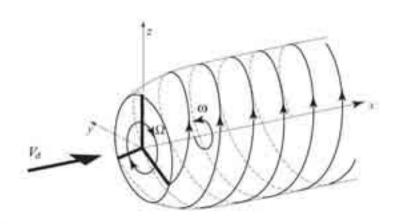
Sulla pala agiscono due flussi d'aria, che dipendono da:

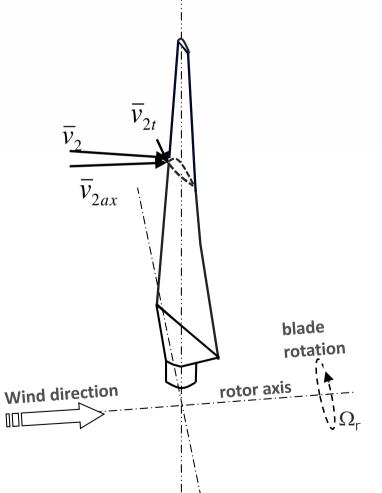
- 1. vento
- 2. rotazione della pala

1. vento

- L'aria entra nel tubo di flusso solo con una componente assiale di velocità
- Per effetto della rotazione della pala si determina anche una componente di vento tangenziale

Flussi d'aria agenti sulla pala


1. Componente di vento alla turbina


$$\overline{v}_2 = \overline{v}_{2ax} + \overline{v}_{2t}$$

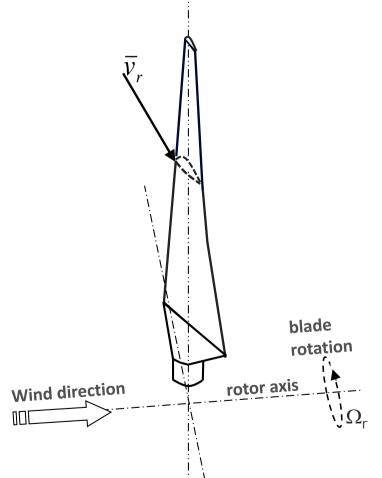
 \overline{v}_{γ} velocità risultante

 \overline{v}_{2ax} componente assiale

 \overline{v}_{2t} componente tangenziale

22

Flussi d'aria agenti sulla pala

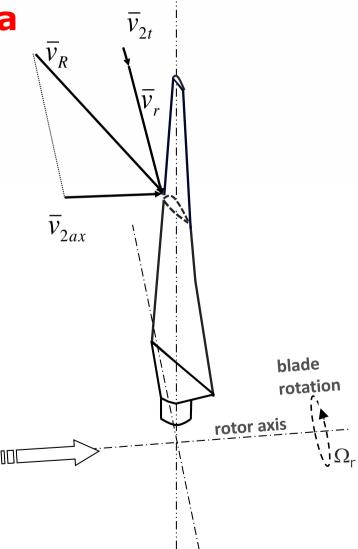

2. Componente di rotazione

$$\overline{v}_r = -\overline{\Omega}_r \times r$$

 \overline{v}_r componente di rotazione [m/s]

 $\overline{\Omega}_r$ velocità di rotazione [rad/s]

r raggio della sezione [m]

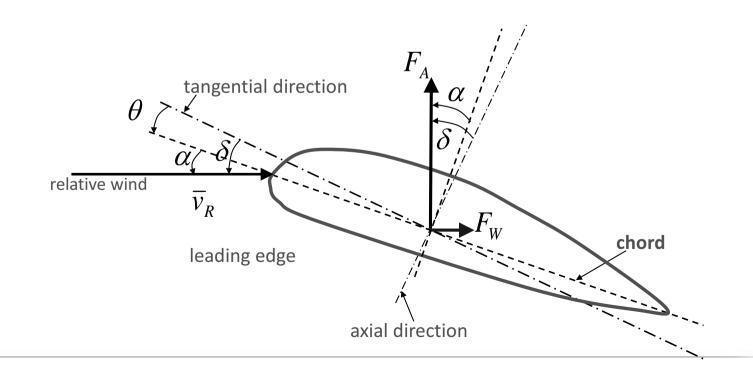

Flussi d'aria agenti sulla pala

Componente risultante

$$\overline{v}_R = \overline{v}_2 + \overline{v}_r$$

 \overline{v}_R componente risultante [m/s]

$$v_R = \sqrt{v_{2ax}^2 + \left(v_{2t} + \Omega_R r\right)^2}$$

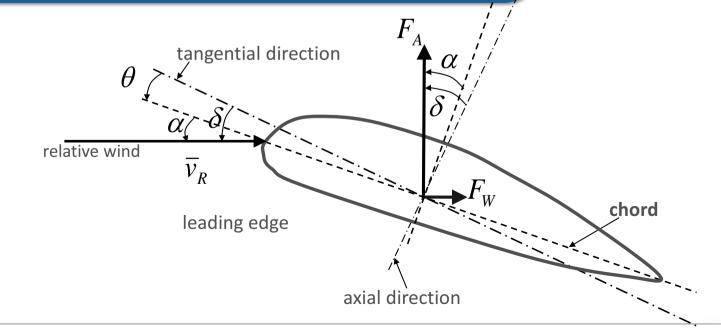


Forze agenti sulla pala

Effetto risultante di un flusso d'aria su un profilo alare

 \overline{F}_A : forza di sollevamento (PORTANZA, perpendicolare al vento relativo)

 \overline{F}_{W} : forza di trascinamento (RESISTENZA, in direzione del vento relativo)


25

Forze agenti sulla pala

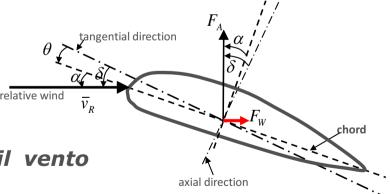
Definizione degli angoli

- α angolo di attacco o incidenza
- δ angolo di costruzione
- θ angolo di calettamento

Forze agenti sulla pala

Effetto risultante di un flusso d'aria su un profilo alare

F_w: forza di trascinamento (nella stessa direzione del vento relativo)


Si consideri un segmento di pala di spessore d_r

$$dF_W = \frac{\rho}{2} t_B v_r^2 c_W(\alpha) dr$$

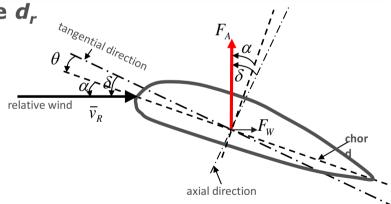
 t_B spessore della pala

 $c_w(\alpha)$ coefficiente di trascinamento (drag)

α angolo tra la corda del profilo ed il vento relativo al bordo d'attacco

RESISTENZA: in un aereo è la forza che si oppone al movimento dell'ala in direzione contraria all'aria.....

Forze agenti sulla pala


Effetto risultante di un flusso d'aria su un profilo alare

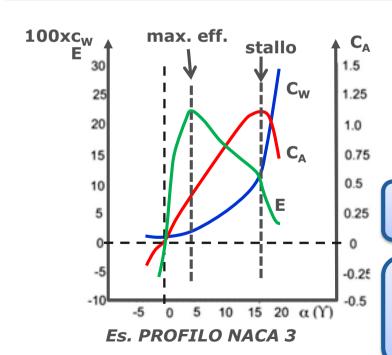
F_A: forza di sollevamento (perpendicolare al vento relativo)

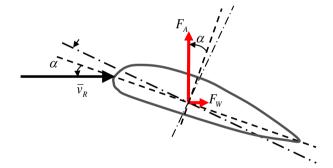
Si consideri un segmento di pala di spessore d_r

$$dF_A = \frac{\rho}{2} t_B v_r^2 c_A(\alpha) dr$$

 $c_w(\alpha)$ coefficiente di sollevamento (lift)

PORTANZA: in un aereo F_{Δ} è la forza che solleva l'ala.....


Come in ogni altro profilo alare, maggiore è la forza di sollevamento F_A rispetto alla forza di trascinamento F_W e migliore è l'efficienza E dell'ala $(E=c_A/c_W)$



Forze agenti sulla pala

Effetto risultante di un flusso d'aria su un profilo alare

Mentre la PORTANZA $\overline{F_A}$ può essere rivolta da una parte o dall'altra in funzione dell'angolo di incidenza α , la RESISTENZA $\overline{F_W}$ ha sempre il verso di $\overline{v_R}$.

MAX. EFF: condizione di funzionamento in cui l'efficienza E del profilo alare è massima

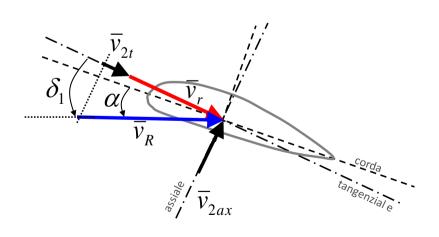
STALLO: condizione di funzionamento in cui l'efficienza del profilo alare si riduce di molto ed il comportamento aerodinamico diventa instabile.

Forze agenti sulla pala

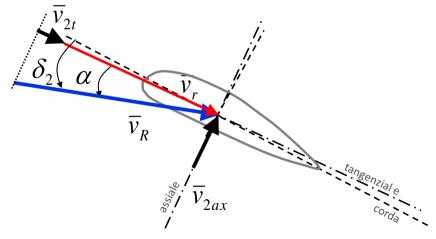
Moto laminare

STALLO

⊗ 1998 www.WINDPOWER.dk



Forze agenti sulla pala


Svergolamento (twist)

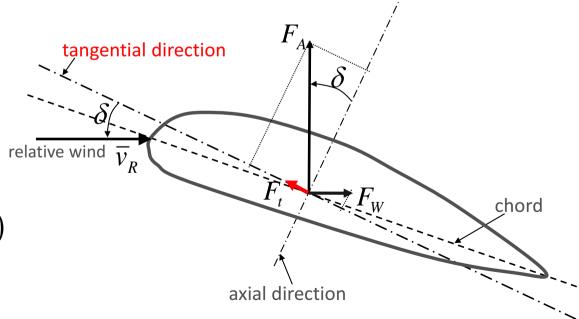
Al crescere del raggio r aumenta la velocità di trascinamento $v_r = \Omega r$.

Per mantenere l'angolo di incidenza costante lungo tutta la pala (nel punto di efficienza massima) è necessario che l'angolo δ diminuisca al crescere di r.

sezione di pala al raggio r₂

$$r_2 > r_1 \Rightarrow \delta_1 > \delta_2$$

Forze agenti sulla pala

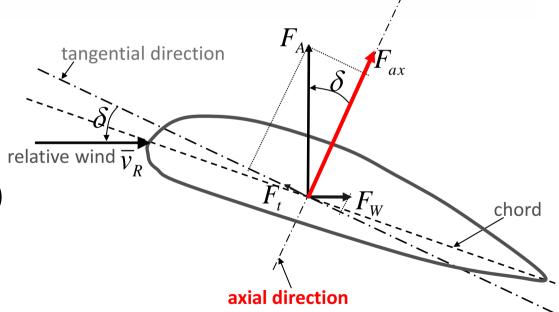

Effetto utile – Forza tangenziale

 \overline{F}_t La componente di forza utile ai fini della generazione di coppia all'albero del rotore è quella in direzione tangenziale alla velocità di rotazione della pala.

$$dF_{t} = dF_{A} \sin \delta - dF_{W} \cos \delta$$

$$dF_{t} = \frac{\rho}{2} t_{B} v_{r}^{2} \left(c_{a} \sin \delta - c_{w} \cos \delta \right)$$

Forze agenti sulla pala


Forza assiale

 \overline{F}_{ax} componente di forza in direzione assiale

$$dF_{ax} = dF_A \cos \delta + dF_W \sin \delta$$

$$dF_{ax} = \frac{\rho}{2} t_B v_r^2 (c_a \cos \delta + c_w \sin \delta)$$

La forza assiale è quella che sollecita il sostegno del rotore

Coppia sul rotore

Integrando d_{Ft} su tutta la lunghezza della pala e moltiplicando per il numero delle pale si ha la coppia trasmessa all'albero del rotore.

Il problema principale nell'utilizzo pratico di queste espressioni è che occorre conoscere la velocità del vento v_2 in ogni sezione di turbina ed i coefficienti c_a e c_w .

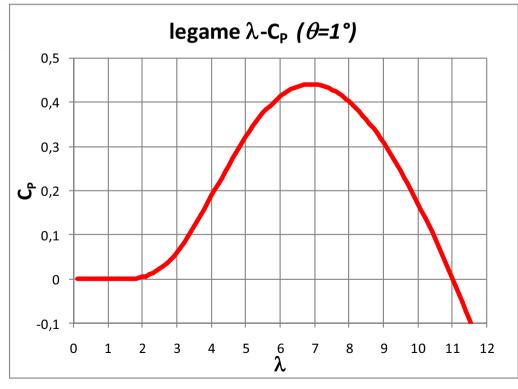
Tip Speed Ratio – TSR, λ

$$\lambda = \frac{v_u}{v_1}$$

λ: rapporto tra la velocità periferica delle pale e velocità del vento libero.

 v_u velocità lineare della pala nella sua sezione più estrema $\left(v_u = \Omega_r r_{out}\right)$

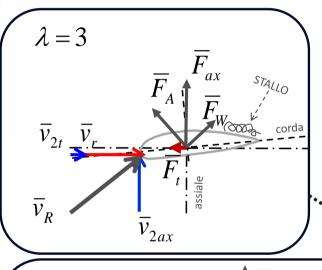
 v_1 velocità lineare del vento indisturbato a monte del generatore

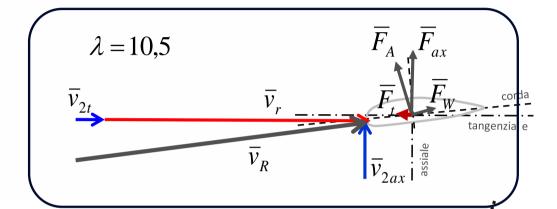

Le caratteristiche aerodinamiche di una pala sono assegnate come legame TSR-C_P

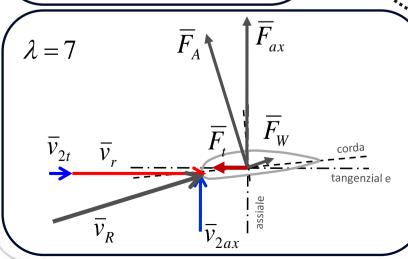
Per una data pala, il legame TSR- C_P dipende dall'angolo di calettamento θ

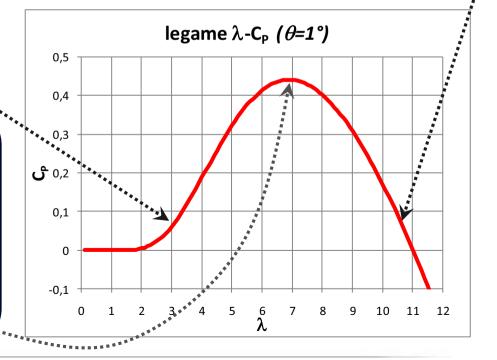
Tip Speed Ratio – TSR, λ

Esempio di legame λ - C_P

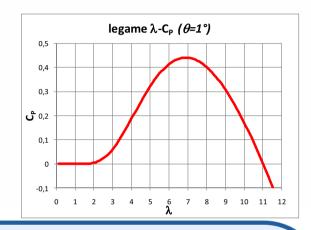



$$c_{p}(\lambda,\theta) = 0.73 \left(\frac{151}{\lambda_{i}} - 0.58\theta - 0.002\theta^{2.14} - 13.2 \right) e^{-18.4/\lambda_{i}}$$


$$\lambda_i = \frac{1}{\frac{1}{\lambda - 0.02\theta} - \frac{0.003}{\theta^3 + 1}}$$



Tip Speed Ratio

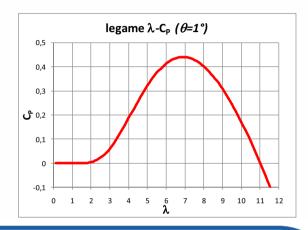


Tip Speed Ratio – *TSR*, λ

Considerazioni a θ costante

- 1. Esiste un unico valore di tip speed ratio *λ* per il quale l'efficienza di conversione è massima (C_{PMAX}) che dipende dalla forma della pala.
- 2. Al variare della velocità del vento v_1 occorre variare la velocità di rotazione delle pale per mantenere λ costante e pari al valore in cui si ha C_{PMAX}

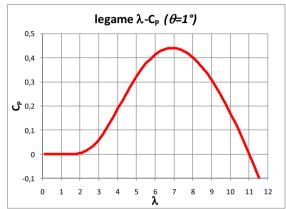
$$\lambda = \frac{v_u}{v_1}$$

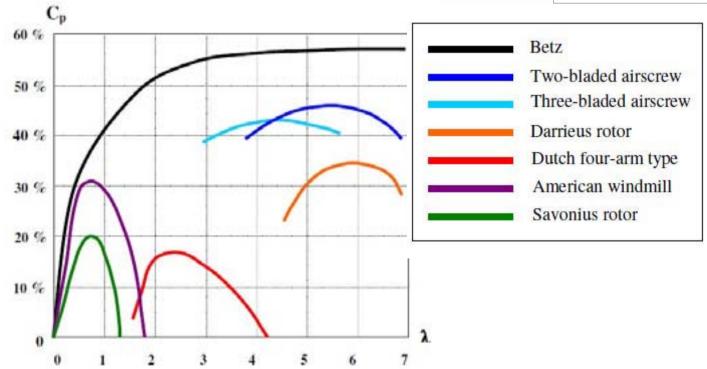

$$v_u = \Omega_r r_{out}$$

$$v_1 \uparrow \Rightarrow \Omega_r \uparrow$$

Tip Speed Ratio – TSR, λ

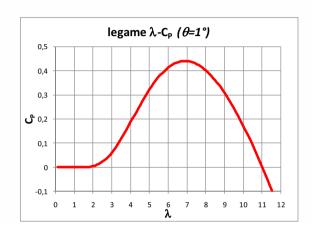
Considerazioni a θ costante


- 3. Per valori di λ bassi si ha una riduzione di portanza ed un della resistenza fino al raggiungimento aumento della condizione di STALLO (distacco dei filetti fluidi)
- 4. Per valori di λ alti si ha una riduzione di portanza e di resistenza, la componente tangenziale tende ad annullarsi, è detta condizione di FUGA.


In altre parole, per λ elevati le pale ruotano tanto velocemente che costituiscono una parete solida rispetto al flusso del vento, che lo scavalca, per cui l'energia raccolta è nulla.

Tip Speed Ratio – TSR, λ

Il valore massimo di C_p , e la forma caratteristica della curva $C_p(\lambda)$ dipendono dal tipo di turbina



TSR e coppia

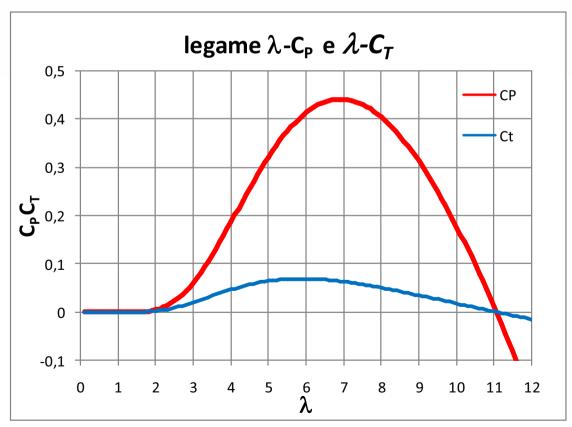
Coefficiente di coppia C_T

$$C_R = \frac{P_R}{\Omega_r} = \frac{P_d C_P}{\Omega_r} = \frac{1}{2} \dot{m} v_{\infty}^2 \frac{C_P}{\Omega_r}$$

$$C_{M\!A\!X} = F_d \cdot r_{\!\!\!m} = \dot{m} v_{\!\!\!\!\infty} r_{\!\!\!\!m}$$
 ...se tutta la forza disponibile dal vento fosse trasformata in coppia sul raggio medio della turbina $r_m = r_{out}/2$

$$C_T = \frac{C_R}{C_{MAX}} = \frac{\frac{1}{2} \dot{m} v_{\infty}^2}{\dot{m} v_{\infty} \frac{r_{out}}{2}} \frac{C_P}{\Omega_r} = \frac{v_{\infty}}{r_{out} \Omega_r} C_P = \frac{C_P}{\lambda}$$

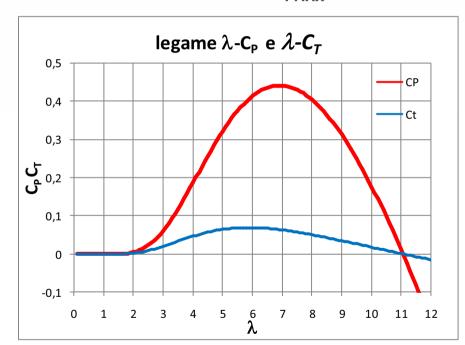
I valori massimi di C_T e il λ a cui si ottengono consentono di classificare la turbina

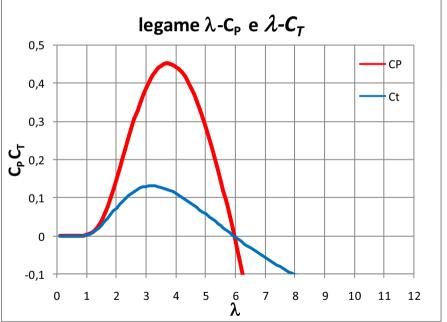


TSR e coppia

Coefficiente di coppia C_T

$$C_T = \frac{C_P}{\lambda}$$

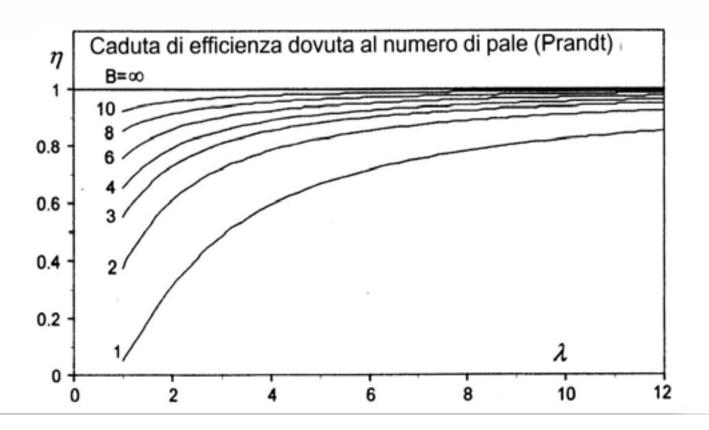

42



TSR e coppia

turbina veloce $\lambda_{PMAX}=7$

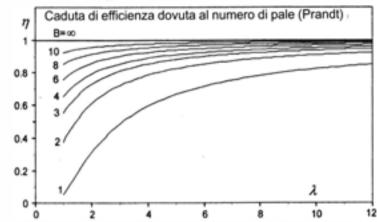
turbina lenta $\lambda_{PMAX}=3,5$



Turbine veloci e lente possono estrarre la stessa potenza dal vento (stesso C_P), ma sono soggette a coppie diverse (diverso C_T)

Numero di pale

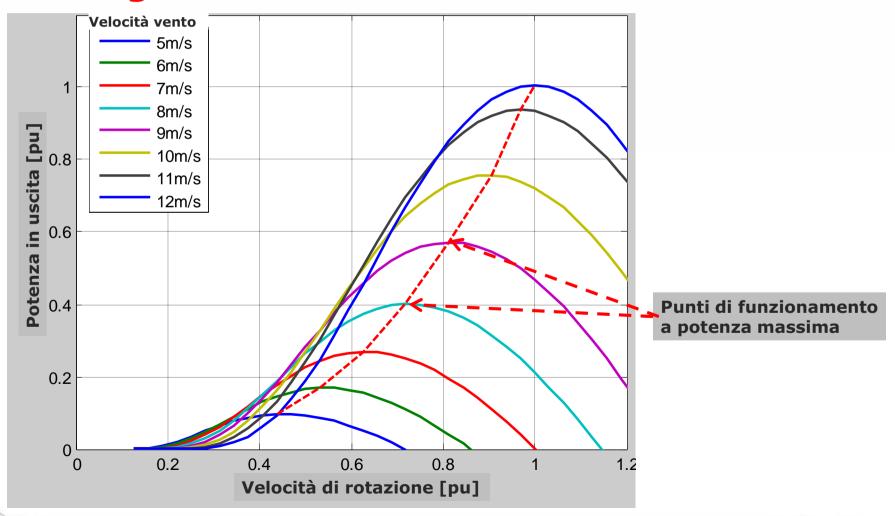
Lo sfruttamento dell'energia sul disco attuatore dipende anche dal numero di pale


44

Numero di pale

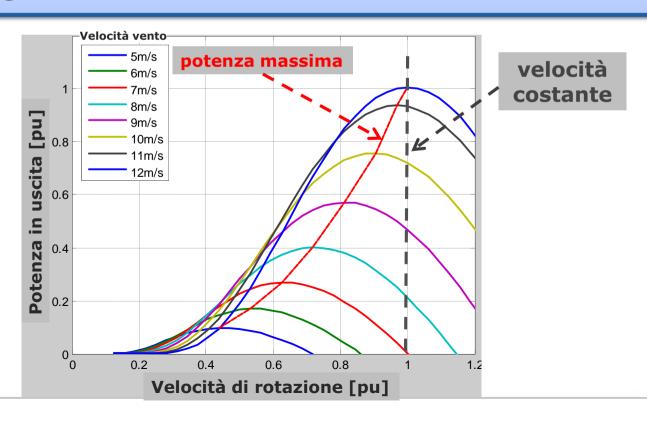
In generale:

Maggiore è il numero di pale maggiore è il rendimento η

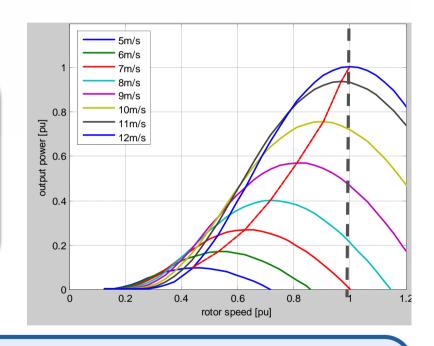

OSSERVAZIONI

Le turbine 'lente' (basso λ), hanno efficienza η elevata se realizzate con un elevato numero di pale

Nelle turbine 'veloci' (alto λ), il numero di pale non incide fortemente sul rendimento

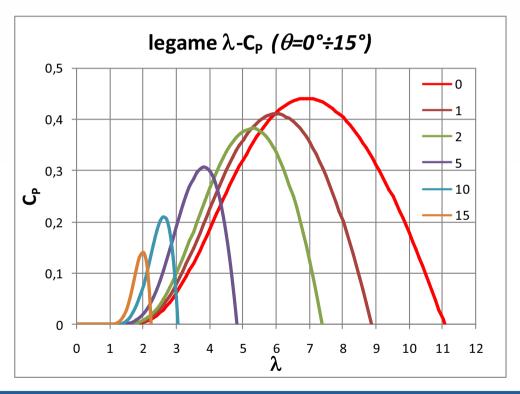

3.1 Regolazione della velocità di rotazione

3.1 Regolazione della velocità di rotazione


La regolazione di velocità è indispensabile per massimizzare l'estrazione di potenza per velocità di vento inferiori alla nominale

3.1 Regolazione della velocità di rotazione

A velocità costante, si ha estrazione di potenza ottimale per una sola velocità di vento. Per velocità di vento inferiori si può avere anche una notevole riduzione di potenza



ESEMPIO

In genere, la regolazione di velocità di rotazione nel range 40%÷100% è sufficiente a massimizzare l'estrazione di potenza per velocità di vento comprese tra 4m/s e 12m/s

3.2 Variazione dell'angolo di calettamento θ 'pitch'

Al variare dell'angolo di calettamento θ :

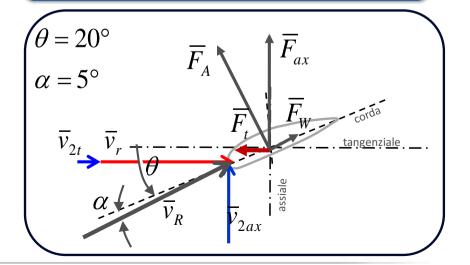
- 1. variano le curve λ - C_P
- 2. varia il C_{PMAX} e λ_{PMAX}

3.2 Angolo di calettamento θ 'pitch' VARIABILE

Per velocità di vento maggiori della nominale

Regolazione 'PITCH TO FEATHER'

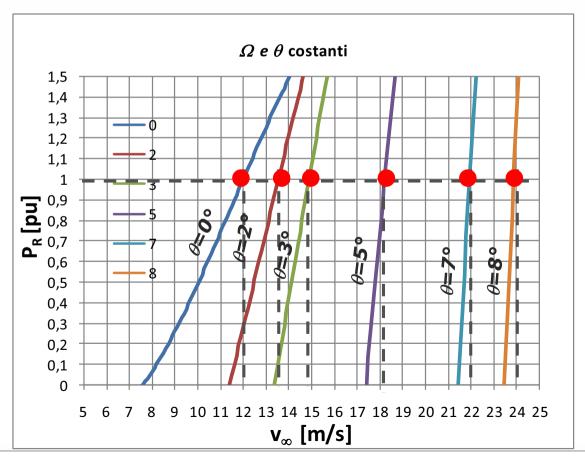
velocità di rotazione costante Ω_r =cost


aumento dell'angolo di calettamento θ

 $\theta = 10^{\circ} \qquad \overline{F}_{A} \qquad \overline{F}_{ax}$ $\alpha = 10^{\circ} \qquad \overline{F}_{t} \qquad \overline{F}_{w} \qquad \overline{F}_{t} \qquad \overline{F}_{w} \qquad \overline{F}_{t} \qquad \overline{F}$

Si riduce l'angolo d'attacco α

Si riduce la PORTANZA F_A .


La forza tangenziale F_t e quindi la coppia restano costanti

3.2 Angolo di calettamento θ 'pitch' VARIABILE

Per velocità di vento maggiori della nominale Regolazione 'PITCH TO FEATHER'

3.2 Angolo di calettamento θ 'pitch' VARIABILE

Per velocità di vento maggiori della nominale:

Regolazione 'PITCH TO FEATHER'

OSSERVAZIONI

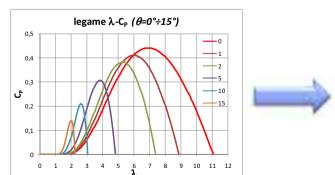
Consente un buon controllo del flusso aerodinamico (i filetti fluidi non si staccano, si è sempre lontani dallo stallo)

Per ogni velocità di vento esiste un valore di *pitch* per il quale la pala è in grado di produrre la potenza nominale alla velocità nominale

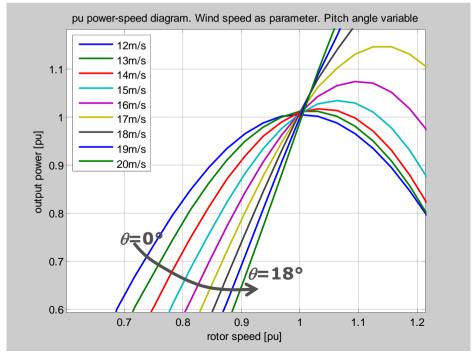
Sono richieste ampie variazioni di *pitch*. Es θ =[0÷25°]

È una tecnica molto utilizzata

3.2 Angolo di calettamento θ 'pitch' VARIABILE


Per velocità di vento maggiori della nominale:

Regolazione 'PITCH TO FEATHER'


velocità di rotazione costante

+

controllo del pitch

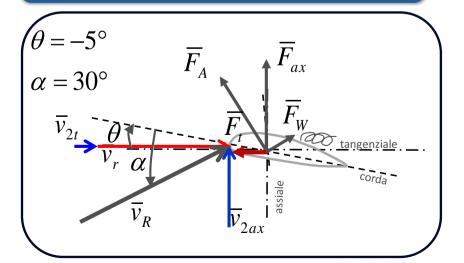
Limitazione della potenza estratta

3.3 Angolo di calettamento θ 'pitch' VARIABILE

Per velocità di vento maggiori della nominale:

Regolazione 'PITCH TO STALL'

velocità di rotazione costante Ω_r =cost

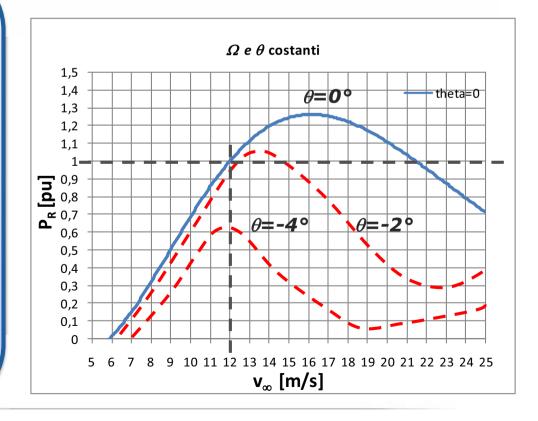

Diminuizione dell'angolo di calettamento θ

 $\theta = 10^{\circ} \qquad \overline{F}_{A} \qquad \overline{F}_{ax}$ $\alpha = 10^{\circ} \qquad \overline{F}_{t} \qquad \overline{F}_{w} \qquad \overline{F}_{corda}$ $\alpha = 10^{\circ} \qquad \overline{F}_{t} \qquad \overline{F}_{w} \qquad \overline{F}_{t} \qquad \overline{F}_{w} \qquad \overline{F}_{t} \qquad \overline{F}_{t}$

Aumenta l'angolo d'attacco α

Si riduce la PORTANZA F_A , aumenta la resistenza F_W

La forza tangenziale F_t e quindi la coppia restano costanti


3.3 Angolo di calettamento θ 'pitch' VARIABILE

Per velocità di vento maggiori della nominale

Regolazione 'PITCH TO STALL'

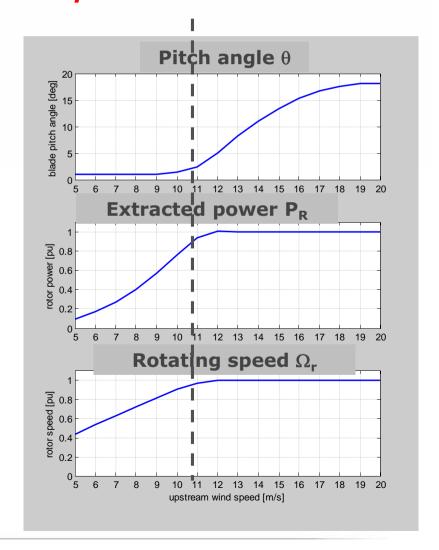
OSSERVAZIONI

- 1. Minime variazioni negative del pitch, portano la pala in stallo, riducendo la potenza estratta dal vento
- 2. Difficile controllo della potenza con la pala in stallo
- 3. Richiede minime variazioni di pitch. Es $\theta = [0 \div -4^{\circ}]$

3.4 Regolazione combinata Ω_r - θ

CONTROLLO OTTIMALE

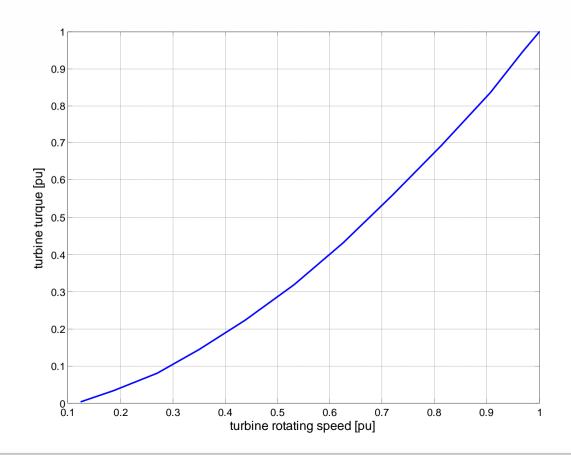
Velocità inferiore alla nominale:


Variazione di velocità di rotazione

Velocità superiore alla nominale

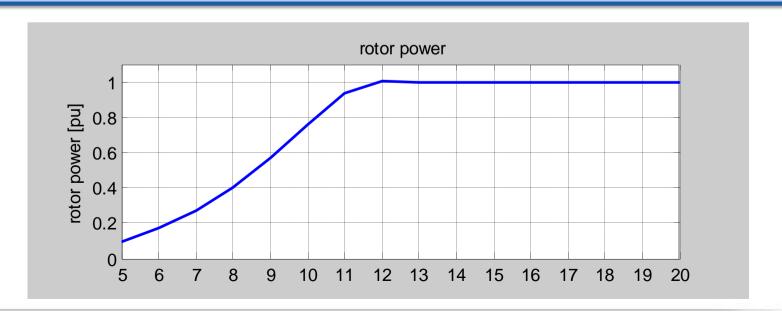
Variazione di angolo di pitch

Velocità prossima alla nominale


Variazione sia di velocità che di pitch

3.4 Regolazione combinata Ω_r - θ

Legame coppia-velocità



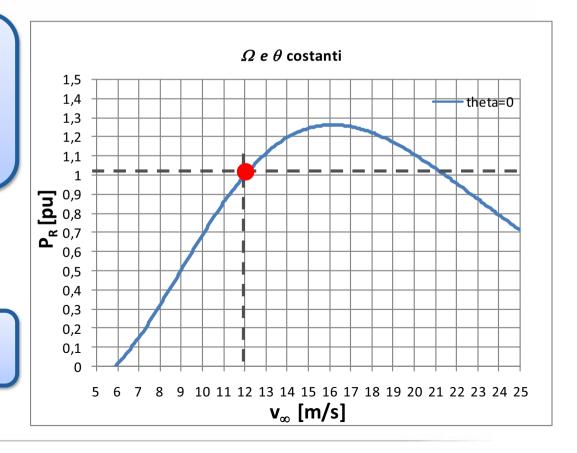
3.4 Regolazione combinata Ω_r - θ

Consente

- 1. Migliore sfruttamento del vento a velocità inferiori alla nominale
- 2. Mantenimento della potenza al valore nominale per velocità di vento maggiori della nominale

58

3.5 Angolo di calettamento θ 'pitch' FISSO

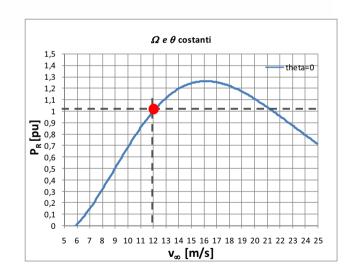

Per velocità di vento maggiori della nominale:

velocità di rotazione costante Ω_r =cost

+

pitch costante θ =cost

potenza generata non costante

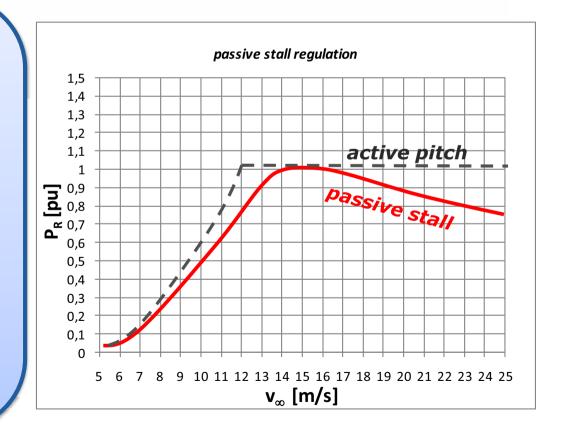


3.5 Angolo di calettamento θ 'pitch' FISSO

Per velocità di vento maggiori della nominale:

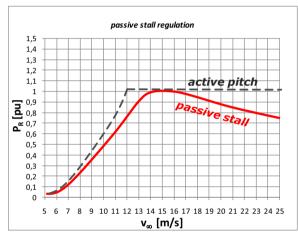
OSSERVAZIONI

- 1. Non si utilizza il meccanismo di regolazione del pitch. Semplicità costruttiva.
- 2. La potenza generata non è costante
- 3. Utilizzabile per piccole turbine, piccoli impianti, senza problemi particolari di allaccio alla rete.



3.5 Angolo di calettamento θ 'pitch' FISSO

Fixed pitch, passive stall regulation


- 1. La potenza generata è tagliata, per effetto dell'entrata in stallo della pala
- 2. Non si ha supero della potenza rispetto alla nominale
- 3. Lo stallo si manifesta dall'estremità della pala all'interno in modo graduale (per effetto dello svergolamento della pala)

3.5 Angolo di calettamento θ 'pitch' FISSO

Fixed pitch, passive stall regulation

INCONVENIENTI:

Difficilmente si riesce ad ottenere la potenza costante. Al crescere del vento la potenza diminuisce

Pitch fisso: espone un'elevata superficie al vento. Struttura molto sollecitata durante le raffiche di vento forte.

Grazie per l'attenzione

www.elettrica.ing.unibo.it

Generazione eolica